<table>
<thead>
<tr>
<th>Symbol name</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10K03</td>
<td>10K Ohm</td>
<td>If no letter, it means J: 5%</td>
<td>1/16W, 75V</td>
<td>0603</td>
</tr>
<tr>
<td>33d3R5</td>
<td>33.3 Ohm</td>
<td>If no letter, it means J: 5%</td>
<td>1/10W, 10V</td>
<td>0805</td>
</tr>
<tr>
<td>1t3fF</td>
<td>1K Ohm</td>
<td>F: 1%</td>
<td>1/16W, 75V</td>
<td>0603</td>
</tr>
</tbody>
</table>

The naming rule is: Symbol name + value + tolerance + material:
- SC = SMT Ceramic, TC = POS cap or SP cap
- D1U = 0.1 uF
- 10V = the voltage rating is 10V
- For the value, it can be read by the number before R. (R means resistor)
- For the tolerance, it can be read from the last letter.
- For the rating, we don't show on the symbol name.
- For the size, R2 = 0402, R3 = 0603, R5 = 0805, etc...

CAPACITOR

<table>
<thead>
<tr>
<th>Symbol name</th>
<th>Value</th>
<th>Tolerance</th>
<th>Rating</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC01U15V2MX-1</td>
<td>0.1uF</td>
<td>M/X5R</td>
<td>10V</td>
<td>0402</td>
</tr>
<tr>
<td>SC15U03V2MX</td>
<td>10uF</td>
<td>M/X5R</td>
<td>6.3V</td>
<td>0805</td>
</tr>
<tr>
<td>SC20U22V6ZY</td>
<td>2.2uF</td>
<td>Z/Y5V</td>
<td>16V</td>
<td>0805</td>
</tr>
</tbody>
</table>

The naming rule is: Capacitor type + value + tolerance + size + material:
- SC01U15V2MX-1
- SC01U15V2MX-1 = SMT Ceramic, TC01 = POS cap or SP cap
- D1U01 = 0.1 uF
- 10V = the voltage rating is 10V
- For the value, it can be read by the number before R. (R means resistor)
- For the tolerance, it can be read from the last letter. For the rating, we don't show on the symbol name.
- For the size, R2 = 0402, R3 = 0603, R5 = 0805, etc...

PCI TABLE

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>IDSEL</th>
<th>IROD</th>
<th>REQ# / GNT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIPCI SLOT</td>
<td>A018</td>
<td>F, G</td>
<td>REQ#2 / GNT#2</td>
</tr>
<tr>
<td>CARDSLOT 54C593</td>
<td>A016</td>
<td>SERIRQ</td>
<td>REQ#0 / GNT#0</td>
</tr>
<tr>
<td>AGP</td>
<td>A017</td>
<td>E</td>
<td>REQ#1 / GNT#1</td>
</tr>
<tr>
<td>LAN8256EX</td>
<td>A024</td>
<td>A, D, C</td>
<td></td>
</tr>
<tr>
<td>USB UHCI</td>
<td>A029</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>USB 2.0 EHCI</td>
<td>A029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hub to PCI</td>
<td>A030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPC Bridge/IDE/AC97/SMBus</td>
<td>A031</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANAR_ID[2..0]

<table>
<thead>
<tr>
<th>ICH4-M GPIO</th>
<th>34</th>
<th>33</th>
<th>32</th>
<th>Snote-1 Planar ID Version</th>
<th>Planar PCB Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANAR_ID[3]</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>SDV-1, SVT-R</td>
<td>03209-SA, 03209-S</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SDV-2</td>
<td>03209-SA</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SDV-3</td>
<td>03209-SA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>SV</td>
<td>03209-SB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>SV-R</td>
<td>03209-SC</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>SVT-R</td>
<td>03209-SD</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>SVT</td>
<td>03209-1</td>
<td></td>
</tr>
</tbody>
</table>

MEM_BASE_ID[4..0]

<table>
<thead>
<tr>
<th>BASE_MEM_ID</th>
<th>39</th>
<th>38</th>
<th>37</th>
<th>36</th>
<th>35</th>
<th>Total Capacity</th>
<th>Density</th>
<th>Qty</th>
<th>Chip P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICH4-M GPIO</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>256MB</td>
<td>256MB</td>
<td>8</td>
<td>Infineon p/HYB25D256160CT-6 (Rev D11 / 0.11um)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>256MB</td>
<td>256MB</td>
<td>8</td>
<td>Micron p/M46V16M16TG6 6T C (Rev T16 / 0.13um)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>256MB</td>
<td>256MB</td>
<td>8</td>
<td>Samsung p/K4H561638D-TCB3 (Rev D3 / 0.13um)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>256MB</td>
<td>512MB</td>
<td>4</td>
<td>Hynix p/HY5DU121622AT-J (Rev PC / 0.13um)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>256MB</td>
<td>512MB</td>
<td>4</td>
<td>Micron p/M46V32M16TG6 6T C (Rev T17 / 0.11um)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>256MB</td>
<td>512MB</td>
<td>4</td>
<td>Samsung p/K4H5163BB-TCB3 (Rev B / 0.10um)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>512MB</td>
<td>512MB</td>
<td>8</td>
<td>Hynix p/HY5DU121622AT-J (Rev PC / 0.13um)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>512MB</td>
<td>512MB</td>
<td>8</td>
<td>Micron p/M46V32M16TG6 6T C (Rev T17 / 0.11um)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>512MB</td>
<td>512MB</td>
<td>8</td>
<td>Samsung p/K4H5163BB-TCB3 (Rev B / 0.10um)</td>
<td></td>
</tr>
</tbody>
</table>
For CPU VCCA(0-3) PLL, place one 0.01u & 10u for each VCCA pin

Route these two signals:
1. Equal length (Max. length < 100mils)
2. Width/Spacing=1/3
3. 3.5mils away from other signals.

GTLREF voltage
Close to the ball AD26, < 0.5"
2.2UF X5R 0603 X15PCS

10UF X5R 0805 X15PCS
Unless otherwise noted, the voltage level for all signal in this interface is tied to the termination voltage of the Processor System Bus (Vt = 1.3V)

- **GTL_D[63:0]**
 - Be transferred at the 4x rate
 - These signals are inverted on the CPU bus

- **GTL_A[31:3]**
 - Be transferred at the 2x rate
 - The address inverted on the CPU bus

- **GTL_REQ[4:0]**
 - Defines the attributes of the request
Please check Intel Montara-GM EDS
REV NO. 1.1 REF NO. 32716
Page 136
PLACE 1 CAP FOR EVERY 2 BITS TERMINATED TO VCC1R25B
Main Source : 73.03157.00H (FAIRCHILD)
2nd Source : 73.53157.00J (PERICOM)
Inverter VBL16 Control

Inverter LED Brightness Control Resistor

Each per pin

LCD Brightness Control

Thinklight Circuit

Cover Switch

Capacitors For EMI

LCD / Inverter Connector

Wistron Corporation
21F, M1 Sec. 1, Hsin Fu Rd., Hsinchu, Taipei Hsien 221, Taiwan, R.O.C.

File: LCD CONNECTOR

Date: 06/01/2005

Rev: 2

Document Number: S Note-1
Pi-filter for RGB

Pi-filter & 75 Ohm pull-down resistors should be as close as to CRT CONN. RGB will hit 75 Ohm first, pi-filter, then CRT CONN.

Ferrite bead impedance: 22ohm@ 100MHz

Wistron Corporation
2F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

EXT CRT CONNECTOR

File: EXT CRT CONNECTOR

Date: Wednesday, June 01, 2005

Document Number: S Note-1

Revision: 2
Within a given well, 5VREF needs to be up before the corresponding 3.3V rail
CLK LINES: SHIELDED BY GND (RECOMMENDED)

Add 2 ground vias close to LED1.
For EMI...

These four resistors are populated for K...

Install 1% 49.9 OHM resistors with K2-32 or 1% 60.4 OHM resistors with K controller.

Be careful wiring.
- Need more 40mil spacing from other signals in case of routing on top/bottom (surface) side.
- Need more 20mil spacing from other signals in case of routing on internal layers.

Maximum mismatch between a pair is 50mil.
Difference of each pairs should be within 1.5inch.
Part Number is updated to 20.F0430.040
New connector is going to rearrange the pin number.
Please bring both close

Please put these components close to docking side
Please place close to the AMP and Amplifier VDD pins.

When G1 = 1 / G2 = X, HP = 3 dB
When G1 = 0 / G2 = 0, SP = 6 dB, HP = 0 dB
When G1 = 0 / G2 = 1, SP = 9 dB, HP = 0 dB
Unused FGPI pins must not be float

Golden Finger for Debug Board
Keyboard Connector

Keyboard Connector Top View

HOTKEY# to R425/Q18

Wistron Corporation
21F, 6F, Sec. 3, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.
SNOTE-SIV-EC019

To support serial debug port and debug mode.

- Add six test points on U26 serial ports and GPIOs.
For EMI
Place close to pin26.
Fan Power Control

- CN16: LV CPU ASM
- CN17: NO_ASM
- LV CPU NO_ASM
- ASM With Heat Pipe
- NO_ASM
- Without Heat Pipe

Thermal Sensor LM75 for DDR module

(For DDR throttling implementation)

- H8 I2C Bus 1 ADDRESS: 48H
- H8 I2C Bus 1 ADDRESS: 4DH
- PLACE UNDER DIMM
- PLACE UNDER PALM REST
- TO CPU DIE
- PLACE UNDER CPU DIE
- PLACE UNDER PC CARD SLOT
- Reserved

These caps must be placed as close as possible to MAX1989

- Main Source: 74.00075.0B9 (NS)
- 2nd Source: 74.00075.CB1 (MAXIM)

Reserved

S Note-SIV-EC022:
- Move near Analog parts.
Please close to JK4.

NO ASM

PDZ12B uses the symbol of ULDZ12B.

S Note-1 -2

DC/DC DC-IN

A3

Wednesday, June 01, 2005

Title

Size Document Number Rev

Sheet

of

Wistron Corporation

21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih,
Taipei Hsien 221, Taiwan, R.O.C.
Some 2SK3019-Ns but swap the pin1
Q3, Q16, Q47, Q48

Not DC/DC BATT

Wednesday, June 01, 2005

For EMI

For EMI

WIDE PATTERN

SNOTE-SIV-EC020

For EMI
- Use the symbol of 2N7002, Q48 and Q57.

Note-1
For EMI recommendation:
Place C51 near U59 (5, 6, 7, 8 pin)
Wide and short pattern

For EMI recommendation near L25 (2 pin)
Wide and short pattern

Deeper Sleep Voltage=0.748V
S0=L, S1=H, S2=Open

Boot-up Voltage=1.2V
B0=L, B1=L, B2=Open

Wistron Corporation
21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih,
Taipei Hsien 221, Taiwan, R.O.C.

File
DC/DC VCCPUCORE

2SA ILM= 2.91 / (91+180) = 0.671V
OCP: 61.7 / 2 = 33.5A

2B ILM= 2.99 / (99+180) = 0.586V
OCP: 35.6 / 2 = 17.8A
GMCH Core Power

1D35V / 2.2A

For EMI

1.35V 105K Ohm

R813 R814

49.9K Ohm 105K Ohm

MONTARA GM+

VCCGMCHCORE

69.8K Ohm

Sanyo TPC 40mR

Ton: Vref => 450KHz
OVP/UVP: Vcc => Enable OVP and discharge mode, enable UVP

MAX1992 CPU I/O

Wistron Corporation
21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

MAX1992 CPU I/O

VCCGMCHCORE	R813	R814
MONTARA GM | 1.2V | 69.8K Ohm | 105K Ohm
MONTARA GM+ | 1.35V | 49.9K Ohm | 105K Ohm

MAX1992 VCC

MAX1992_REF

MAX1992_DRV

Ton: Vref => 450KHz; OVP/UVP: Vcc => Enable OVP and discharge mode, enable UVP
7.8 * 1.5 = 11.7
(11.7 + 1.1) * 17 = 218mV

ILIM1: 5*60.4 / (100+60.4) = 1.88V

VOCP1: 188 / 13 = 14.6A

Rds(on) = 22 mohm

Rds(on) = 26.5 mohm

PLFC0745P

PLFC1045P

2.5V / 7.8A

1.5V / 4A

Rd(on) = 22.5 mohm
Place close to pin
ASM FOR KINNERETH-R

ASM FOR KENAI2-32

ASM FOR KENAI2-32

DC/DC ETHERNET POWER

<table>
<thead>
<tr>
<th></th>
<th>KENAI2-32</th>
<th>KINNERETH-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCGBCOREAUX</td>
<td>1.2V</td>
<td>3.3V</td>
</tr>
<tr>
<td>VCCGBEIOAUX</td>
<td>1.8V</td>
<td>N.C</td>
</tr>
</tbody>
</table>
Please add RB501V-40 between CV16 and U23_pin8. It is useful for "Reverse Voltage Input Test".
Maximum 200mA

DC/DC CHARGER SELECT

S Note-1
Accelero Meter Parts List

<table>
<thead>
<tr>
<th>Page</th>
<th>Usage Code</th>
<th>AD22290</th>
<th>MEMSIC</th>
<th>NO_ACC.</th>
<th>AD22290</th>
<th>MEMSIC</th>
<th>NO_ACC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>R138</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R138</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>41</td>
<td>R141</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R141</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>41</td>
<td>R148</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R148</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>41</td>
<td>R149</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R149</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R829</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R829</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R833</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R833</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>U94 (LMV821M7)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>U94</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>L95 (AD20290)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>L95</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>L96 (LMV821M7)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>L96</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>C92 (DTA14EE)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>C92</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>D86 (1SS400)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>D86</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>L29 (BLM11P600S)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>L29</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R815(10K 1%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R815</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R816(10K 1%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R816</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R817(56K 5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R817</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R818(10K5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R818</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R819(182K 1%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R819</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R820(4.7K 5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R820</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R821(0ohm 5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R821</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
</tbody>
</table>

Accelero Meter Parts List

<table>
<thead>
<tr>
<th>Page</th>
<th>Usage Code</th>
<th>AD22290</th>
<th>MEMSIC</th>
<th>NO_ACC.</th>
<th>AD22290</th>
<th>MEMSIC</th>
<th>NO_ACC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>R138</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R138</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>41</td>
<td>R141</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R141</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>41</td>
<td>R148</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R148</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>41</td>
<td>R149</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R149</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R829</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R829</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R833</td>
<td>NO_ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R833</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>U94 (LMV821M7)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>U94</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>L95 (AD20290)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>L95</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>L96 (LMV821M7)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>L96</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>C92 (DTA14EE)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>C92</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>D86 (1SS400)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>D86</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>L29 (BLM11P600S)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>L29</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R815(10K 1%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R815</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R816(10K 1%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R816</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R817(56K 5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R817</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R818(10K5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R818</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R819(182K 1%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R819</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R820(4.7K 5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R820</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
<tr>
<td>65</td>
<td>R821(0ohm 5%)</td>
<td>ASM</td>
<td>NO_ASM</td>
<td>ASM</td>
<td>R821</td>
<td>ASM</td>
<td>NO_ASM</td>
</tr>
</tbody>
</table>